OLIMPÍADA PIAUIENSE DE QUÍMICA - 2014 Modalidade EM2

INSTRUÇÕES

1	- Esta prova	contém	cinco	auestões na	total	sendo i	todas e	las de	múltinla	escolha
_	- LSLa DI UVA	conteni	CHICO	unestnes III	LULAI	. senuo	LUUAS E	ias ue	HIUHUNIA	escolla.

- 2 Antes de iniciar a prova, *confira se todas as folhas estão presentes, sendo cinco folhas, <u>uma para cada</u> <u>resposta</u>. Caso haja algum problema, solicite a substituição da prova.*
- 3 O tempo de duração da prova é de 3h. A prova inicia-se as 14:00h e encera-se as 17:00h
- 5 Não será permitido o uso de calculadoras programaveis.
- 6 Ao terminar a prova, entregue-a ao aplicador.
- 7 Não esqueça de preencher a ficha de identificação, destaca-la e entregar ao aplicador da aprova, juntamente com as folhas de resposta
- 8 Não se identifique em nenhuma folha de resposta, coloque apenas o código que você recebeu. <u>A</u> <u>identificação em qualquer folha de reposta eliminará a referida questão</u>.

<u>IMPORTANTE:</u> A prova da modalidade EM2 é constituída de 5 (cinco) questões subjetivas, valendo 20 (vinte) pontos cada uma.

Destaque aqui	
Identificação	Modalidade EM2
	Código:
Nome:	
Escola:	
Endereço:	
Telefone:	

Dados evetualmente necessários:

Números atômicos

Massa atômicas:

Nas CNTP

$$V = 22,4 L;$$
 p = 1,0 atm R = 0,0821 L atm K⁻¹ mol⁻¹

OLIMPIADA PIAUIENSE DE QUÍMICA 2014 Modalidade EM2 - 26/04/2014

- **01.** Em química, um hidrocarboneto é um composto químico constituído unicamente por átomos de carbono e de hidrogênio unidos tetraedricamente por ligações variadas. Sobre oa hidrocarbonetos, **RESPONDA AS ALTERNATIVAS ABAIXO**.
 - a) Qual a fórmula molecular de um hidrocarboneto de fórmula gerla C_nH_{2n+2} , cuja densidade é 2,71 g L^{-1} ?
 - **b)** Qual o volume de CO₂ formado se a combustão desse hidrocarboneto ocorre a 100 °C e 2 atm de pressão?
- c) Ao queimar 15 mols desse hidrocarboneto em oxigênio sufciente, obtêm-se 1210 L de CO₂ medidas nas CNTP. Qual o rendimento dessa reação?
- 02. Um derterminado átomo (A) apresenta 13 elétrons no nível M.
 - a) Qual o número atômico desse átomo?
 - b) 128 g de dióxido do átomo A (AO₂) reagem com acido clorídrico liberando cloro gasoso. Mostre a equação balanceada para a reação e diga qual o volume de gás cloro obtido nas CNTP?
 - c) De acordo com a nomenclatura para ácidos inorgânicos, a definição do nome é feita por meio do nome dos ânios formados durante a sua ionização total ou parcial. Sabendo que o átomo A, forma óxidos iônicos, qual o nome dos ânions AO₄⁻ e AO₄²⁻?
- **03.** As ligações químicas são uniões estabelecidas entre <u>átomos</u> para formarem <u>moléculas</u> ou no caso de ligações iônicas ou metálicas, aglomerados atômicos organizados de forma a constituírem a estrutura básica de uma <u>substância</u> ou de um <u>composto</u>. Em relação às ligações Químicas **RESPONDA AS SEGUINTES ALTERNATIVAS**.
 - a) Represente, segundo os conceitos de Lewis, a estrutura do carbonato de sódio, Na₂CO₃.
 - b) Dê uma justificativa, **com base na geometria molecular**, para explicar por que o pentóxido de dinitrogênio, N₂O₅, se dissolve em água.
 - c) Das seguintes moléculas, PH₃, NH₃, GaCl₃, Hg₂Cl₂ e BeCl₄, qual aprsenta o menor e qual apresenta o maior ângulo de ligação? **Justifique** sua resposta.
- d) A energia de dissociação da ligação B—F no BF₃ é 646 kJ mol⁻¹ enquanto a energia de dissociação da ligação C—F no CF₄ é 515 kJ mol⁻¹. **COMO VOCÊ JUSTIFICA ESTA AFIRMATIVA?**
- **04.** Um recipiente fechado contém 2 mols de um gás **A** e 1 mol de **O**_{2(g)}. No início da transformação, 2 A (g) + O_{2 (g)} **2** AO_{2 (g)}, a velocidade da reação é **V**_o. Após um determinado intervalo de tempo, passa a existir no recipiente, apenas 1 mol de **A**_{2 (g)}.
 - a) Qual é, em função de V_o, a velocidade da reação?

- **b)** Qual o valor da constante de equilíbrio, Kp, da reação, se $K_2 = 5K_1$?
- **05.** Dada a seguinte reação: $Ag_2CO_{3(s)} \leftarrow Ag_2O_{(s)} + CO_{2(g)}$; $K_p = 0,0095$ atm a 120 °C, resposda as questões seguintes.
 - a) 1% de CO₂ no ar é suficiente para impedir qualquer perda de peso quando o Ag₂CO₃ é seco (aquecido) a 120 °C?
 - b) Qual deve ser o percentual mínimo de CO2 no ar para evitar qualquer perda de peso?